class_names: 1: mito labels: - 1 thing_list: - 1 model: https://zenodo.org/record/6861565/files/MitoNet_v1.pth?download=1 model_quantized: https://zenodo.org/record/6861565/files/MitoNet_v1_quantized.pth?download=1 padding_factor: 16 norms: mean: 0.57571 std: 0.12765 description: > MitoNet_v1 was trained on the large CEM-MitoLab dataset and is a generalist for mitochondrial segmentation. The underlying architecture is PanopticDeeplab. This model is fairly large but powerful. If GPU memory is a limitation, try using MitoNet_v1_mini instead. Read the preprint: https://www.biorxiv.org/content/10.1101/2022.03.17.484806 FINETUNE: criterion: PanopticLoss criterion_params: ce_weight: 1 l1_weight: 0.01 mse_weight: 200 pr_weight: 1 top_k_percent: 0.2 dataset_class: SingleClassInstanceDataset dataset_params: weight_gamma: 0.7 engine: PanopticDeepLabEngine engine_params: confidence_thr: 0.5 label_divisor: 1000 nms_kernel: 7 nms_threshold: 0.1 stuff_area: 64 thing_list: - 1 void_label: 0